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Abstract

A large ongoing international effort is currently under way to produce the first direct image of a
supermassive black hole. Black hole shadows, which are the gravitationally lensed image of the unstable
photon orbit boundary, are predicted to appear prominently in the image as a dark area over a bright
background. Analysis of the size and shape of the shadow can reveal information about the black hole’s
physical parameters, such as its mass, angular momentum, and distance from the observer. In addition,
information of the observer’s orientation with respect to the black hole’s rotation axis can also be obtained
from the shape of the shadow. Using sub-millimeter wavelength Very-Long Baseline Interferometry
(VLBI), I discuss the technical feasibility of observing Sagittarius A* (Sgr A*), our Galactic Center
Supermassive Black Hole (SMBH) candidate. By using numerical simulations of black holes calculated
with general-relativistic magnetohydrodynamics (GRMHD) and general-relativistic radiative transfer
(GRRT), images of black holes with a variety of spin parameters are produced which predict the observed
Sgr A* image. The dependence of the image on black hole and observer physical parameters is investigated
and when the first black hole images are released in April 2019, these results can be compared to the
simulated images presented here.

https://www.ucl.ac.uk/
https://www.ucl.ac.uk/physics-astronomy/
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1 Introduction

Black holes are vacuum solutions to Einstein’s field equations (Einstein, 1916). One year after Einstein
published his equations, Karl Schwarzschild proposed a non-rotating spherically symmetric solution in 1916,
called the Schwarzschild metric (Schwarzschild, 1916). The corresponding solution for a rotating, uncharged
body, the Kerr metric, was not discovered until 1963 (Kerr, 1963). These solutions were considered mathe-
matical curiosities and to this day, black holes have yet to be imaged directly. However, inferences from a
number of independent lines of evidence have provided compelling evidence for the existence of black holes
in nature. Observations of stellar orbits around the Milky Way Galactic Center provided measurements
describing a massive, highly dense object which is inconsistent with any realistic stellar cluster (e.g., Ghez
et al., 1998). Studies of accreting Active Galactic Nuclei (AGNs) have found highly efficient radiation from
accretion disks matching the predictions made for rotating black holes (e.g., Bian and Zhao, 2003). As
recently as 2016, multi-messenger astronomy with gravitational waves has provided another avenue of study
into the effects of merging black holes (Abbott, 2016). The transient signal detected by the Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) matched the waveform predicted for black hole merger
events. Despite this, it is said that, without a direct image, there is still no unambiguous proof that these
objects are indeed black holes rather than some extra dense, pressure-supported configuration such as a dark
star (Falcke, Melia, and Agol, 2000).

Today, a number of modern collaborations such as the Event Horizon Telescope (EHT) and BlackHole-
Camera (BHC) projects are currently working towards imaging supermassive black holes for the first time.
In particular, the EHT is expected to produce an image of the immediate environment of Sgr A* and Messier
87 (M87), soon to be released in April 2019.

This research essay will be on simulating images of rotating black holes using GRMHD and GRRT. The
first sections of the essay will provide an overview of black holes, the GRMHD equations, and the radiation
processes involved in GRRT. Next, discussion will revolve around the shadows which the black holes cast
on the observer plane and how their shape depends on physical parameters associated with the black hole
and the observation inclination angle. Suggestions will be made for how these effects can be disentangled to
estimate the black hole mass and spin. Finally, this essay will investigate the observation methods used by
the EHT collaboration and discuss some of the challenges associated with directly imaging black holes and
the reconstruction of the image.

1.1 Black Holes

A black hole is an object predicted by Einstein’s theory of general relativity which can be categorised by
three physical quantities: mass, spin, and charge. Mass is an essential property, but since the spin and
charge can vary, there exists four classifications of black holes as indicated in Table 1.

No Spin (J = 0) Spin (|J| > 0)
Uncharged (Q = 0) Schwarzschild Kerr

Charged (Q 6= 0) Reissner-Norström Kerr-Newman

Table 1: Black hole solutions of the Einstein field equations categorised by charge and spin.

Schwarzschild black holes are the simplest solution with no spin or electrical charge, but due to the
stellar evolutionary pathway which leads to the formation of a black hole, it is expected for black holes to
retain some angular momentum from their progenitors. Charged black holes, while theoretically possible,
are likely to be short-lived in nature, because they would quickly reach charge neutrality in the presence of
surrounding plasma, as is expected for accreting black holes. Therefore, out of these four types, the most
astrophysically-relevant solution is the Kerr black hole with |J| > 0 (Bardeen, Press, and Teukolsky, 1972).
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Although a Kerr black hole is not charged, magnetic field lines develop from the charged plasma in
an accretion disk. Through the Blandford-Znajek process (Blandford and Znajek, 1977), rotational kinetic
energy can in principle be extracted from a spinning black hole within the ergosphere. Angular momentum
transfer from the black hole to the accreting matter can also occur through the Penrose process (Penrose and
M. Floyd, 1971). The result of these processes is that black holes with accretion disks have strong magnetic
fields which power accretion dynamics.

Eddington Luminosity and Mass Accretion Rate

A spherically symmetric accreting system can be described by the net force (Frank, King, and Raine, 2002)

Fnet =

(
GM(mp +me)

r2

)
− S σT

c
, (1)

where S is the radiant energy flux and σT is the Thomson cross-section. The mass of the central body is
M , while the speed of light is represented by c, and G is the gravitational constant. The mass of the proton
and electron are represented by mp and me respectively. Due to the spherically symmetric property of this
accreting system, the net force is dependent only on the radius r from the central mass. The quantity,
SσT/c is the outward radial force on an electron. For this system, hydrogen is assumed to be fully ionized
and the radiation is assumed to exert a force on free electrons through Thomson scattering. SI units were
employed for clarity. In hydrostatic equilibrium, the radiation force and the gravitational force balances so
that Fnet = 0. By spherical symmetry, the luminosity is related to radiant energy flux as L = 4πr2S. In this
system, the luminosity can be written as

LEdd ≡ L =
4πGMmpc

σT
≈ 3.2× 104

(
M

M�

)
L� , (2)

where M� is the solar mass and L� is the solar luminosity. This quantity is defined as the Eddington
luminosity, which describes the maximum luminosity of a source in hydrostatic equilibrium. If the source
has greater luminosity than the Eddington upper limit, the source body loses material by radiation outflow.
In the context of Kerr black holes, the Eddington luminosity sets an upper limit on the radiation emitted
from processes in its surrounding accretion disk.

The mass accretion rate is related to the luminosity by

Lacc = ηṀc2, (3)

where η is the nominal efficiency of converting accretion mass into energy and Ṁ is the mass accretion rate.
The Eddington mass accretion rate corresponding to the Eddington luminosity is

ṀEdd =
10LEdd

c2
, (4)

where the chosen value of η = 0.1 is a realistic value for highly efficient radiation as in accretion disks around
black holes (Frank, King, and Raine, 2002). For a thin disk accretion model to apply, the mass accretion
rate must be less than the Eddington rate, otherwise, the accreting material becomes too optically thick for
the radiation to escape.

Kerr Black Holes

Unless otherwise stated in the subsequent discussion, geometric units are adopted such that c = G = 1
and the metric signature is [ -,+,+,+ ]. In Boyer-Lindquist coordinates, the Kerr black hole line element is
(Cunningham and Bardeen, 1973)

ds2 =− (1− 2Mr/Σ) dt2 − (4Ma r sin2θ/Σ) dt dφ

+ (Σ/∆)dr2 + Σ dθ2 + (r2 + a2 + 2Ma2sin2θ/Σ) sin2θ dφ2,
(5)
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where the functions Σ and ∆ are defined as

Σ ≡ r2 + a2cos2θ, ∆ ≡ r2 − 2M r + a2. (6)

The dimensionless black hole spin parameter a, also called the “Kerr parameter”, is the angular momen-
tum per unit mass, and is defined as a ≡ cJ/(GM2), where M is the black hole mass and J is the angular
momentum. Its maximum value is a = 1, where if the black hole spin is above this value, the event horizon
does not form and the black hole singularity is in principle visible to external observers. The existence of
these naked singularities have important theoretical implications, including a violation of causality under
general relativity, but although several mechanisms have been proposed to form superspinning Kerr black
holes, they have yet to be observed (Chakraborty, Kocherlakota, and Joshi, 2017). By conservation of angu-
lar momentum, ejected matter causes the black hole to lose angular momentum, lowering its spin parameter.
In reality, the loss of angular momentum to ejected matter is inconsequential over observation time-scales
of interest, such as the mean human life-span, so the spin parameter is assumed to be time-invariant in the
GRMHD simulation described in Section 2.

Under the Boyer-Lindquist coordinates, the metric is divergent when ∆ = 0. Setting ∆ in eqn. (6) to
zero, the positive root of r defines the radius of the event horizon,

rEH ≡M + (M2 − a2)1/2, (7)

where M is the mass of the black hole. The event horizon is independent of the θ, φ angular coordinates
and the classical Schwarzschild radius rs = 2M can be obtained in the limit that a = 0. However, this event
horizon is a coordinate singularity which can be removed by a different choice of coordinates. Instead, it can
be shown in Kerr-Schild coordinates that the Kerr physical singularity is a ring of zero thickness located on
the equatorial plane (Visser, 2007).

The static limit is located where the gtt component of the Kerr metric vanishes. Consequently time-like
world-lines outside the static limit turn into space-like world-lines. Reading gtt from the metric in eqn. (5),
the positive root of the equation (Σ− 2Mr) = 0 is given by

rSL ≡M +
(
M2 + a2 cos2 θ

)1/2
, (8)

where there is a dependence on θ. Inside the region bounded by the static limit, called the ergosphere,
spacetime is dragged in the black hole’s direction of rotation. This is called the rotational frame-dragging or
the Lense-Thirring effect (Thirring, 1918). Photon trajectories plotted in Fig. 4 show frame-dragging at work.

The Lagrangian can be written from the Kerr metric by the general formula derived from the principle
of least action,

L =
1

2
gµν ẋ

µẋν , (9)

where gµν denotes the metric element and the Greek indices take on the values 0, 1, 2, or 3, such that xµ

represents a position four-vector and the dotted ẋµ is its derivative with respect to an affine parameter chosen
to parameterise the path, i.e. proper time. From Noether’s theorem, if the Lagrangian is invariant under
modifications of a quantity, then there is an associated conserved quantity. The Kerr black hole Lagrangian
is independent of time t and angle φ, suggesting that the energy and angular momentum are conserved. In
general relativity, Killing vectors are defined such that the Lie derivative of the Killing vector field vanishes
and these can similarly be used to express symmetries in the geometry of spacetime which preserve the
metric (D’Inverno, 1992). The t and φ vectors are Killing vectors for the Kerr metric associated with the
conserved quantities

E = −pt, L = pφ, (10)

where E is the total energy, and L is the angular momentum parallel to the spin axis. A third conserved
quantity called the Carter’s constant comes from Killing tensor field, instead of a Killing vector, and expresses
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a higher order symmetry (Carter, 1968). The Carter constant is defined as

Q = p2
θ + cos2θ

[
a2
(
m2 − p2

t

)
+ p2

φcsc2θ
]
, (11)

where Q, the Carter’s constant, corresponds to the total angular momentum plus a precisely determined
additional term quadratic in linear momenta (Rosquist, Bylund, and Samuelsson, 2009). The particle rest
mass is represented by m and the generalized momenta, pi are defined by Lagrangian mechanics in terms
of generalized positions qi with the differential pi = ∂L/∂q̇i. In the Schwarzschild limit with θ = π/2,
the Carter’s constant reduces to the orbital angular momentum squared. The fourth conserved quantity of
motion, the particle rest mass, is related to the invariance of the line element under transformation. The
contraction of the four-momentum is pµpµ = −m2, where m = 0 for massless particles such as photons.

Figure 1: Kerr black hole critical radii. The solid
and dashed lines mark the critical radii for prograde
and retrograde rotation respectively. This figure was
created using eqns. (7), (15), and (16).

Hereafter, formulae which appear with upper and
lower signs (ie.±) represent prograde and retrograde
orbits respectively. Using the Euler-Lagrange for-
malism, the equations of motion governing orbital
trajectories around the Kerr black hole are

Σ
dr

dλ
= ±(Vr)

1/2,

Σ
dθ

dλ
= ±(Vθ)

1/2,

Σ
dφ

dλ
= −(aE − L/sin2θ) + a T/∆,

Σ
dt

dλ
= −a (aEsin2θ − L) + (r2 + a2)T/∆,

(12)

where λ is an affine parameter related to the proper
time τ by λ = τ/m. The effective potentials gov-
erning the motion in the r and θ coordinates are

Vr ≡ T 2 −∆ [m2r2 + (L− aE)2 +Q],

Vθ ≡ Q− cos2θ[a2 (m2 − E2) + L2/sin2θ],
(13)

where the potentials are functions only of r and θ, whereas T ≡ E(r2 +a2)−aL. Considering circular orbits
satisfy the condition dr/dλ = 0, it is then possible to solve for the conserved quantities E and L in terms of
r, spin a, and black hole mass M to give

E/m =
r3/2 − 2M r1/2 ± aM1/2

r3/4
(
r3/2 − 3M r1/2 ± 2aM1/2

)1/2 ,
L/m =

±M1/2
(
r2 ∓ 2aM1/2 r1/2 + a2

)
r3/4

(
r3/2 − 3M1/2 r1/2 ± 2aM1/2

)1/2 .
(14)

The formulae for energy and angular momentum parallel to the rotation axis in eqn. (14) share a common
denominator which is only real when the expression in the square root is positive. The limiting case when(
r3/2 − 3r1/2 ± 2a

)
= 0 describes the boundary for a region of space in which circular orbits do not exist

for particles with non-zero mass. Only massless particles such as photons can maintain an unstable orbit on
this boundary (Bardeen, Press, and Teukolsky, 1972). Hereafter referred to as unstable photon orbit and
rph, its radius is defined as

rph = 2M

{
1 + cos

[
2

3
cos−1 (∓a)

]}
. (15)

For a spinning black hole a 6= 0, there is a different radius for prograde (negative sign) and a retrograde
(positive sign) unstable photon orbits. Another important critical radius is the innermost stable circular
orbit (ISCO), which marks the inner radius of a black hole accretion disk. Stability requires the condition
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that the second derivative of the radial potential is negative or zero, that is V ′′r (r) ≤ 0. This radius can be
calculated from the spin parameter by the equations:

rISCO = M
(

3 + Z2 ∓ [(3− Z1)(3 + Z1 + 2Z2)]
1/2
)
,

Z1 ≡ 1 + (1− a2)1/3
[
(1 + a)1/3 + (1− a)1/3

]
,

Z2 ≡
√

3a2 + Z2
1 .

(16)

As the spin of the black hole increases, the retrograde ISCO increases towards 9 rg, where rg = GM/c2 is
the gravitational radius, but the prograde ISCO radius and innermost photon circular orbit radius decrease
towards the black hole event horizon for a maximally spinning black hole. Fig. 1 compares the prograde and
retrograde ISCO, unstable photon orbit, and event horizon radii for a Kerr black hole.

2 General-Relativistic Magnetohydrodynamics

Kerr black holes are characterized by rotation along with strong gravitational and electromagnetic fields. To
understand their structure, it is useful to adopt an ideal GRMHD model, treating the plasma as a perfect
electrically conducting fluid. The advantages of ideal GRMHD in comparison to alternative semi-analytic
models is that rather than calculating through the equations of motion for each particle, the system can be
described by a single conducting fluid with associated macroscopic quantities such as pressure and density.
Ideal GRMHD assumes a single component fluid of ions with no distinctions between species. The effects of
radiative cooling are neglected and the perfect fluid has an ideal equation of state with isotropic pressure,
completely characterized by its rest frame mass density.

2.1 Equations of General-Relativistic Magnetohydrodynamics

The ideal equation of state defines the relationship between density and gas pressure in a thermodynamic
system. Under the calorically perfect gas approximation which obeys the ideal-gas law and has temperature-
independent heat capacities, the relationship between density ρ and gas pressure P is written as

P = (γ − 1)ρe, (17)

where the ratio of specific heats γ = Cp/Cv, called the adiabatic index, is equal to 5/3 for non-relativistic
monatomic fluid and 4/3 for monatomic relativistic fluid. The internal energy per unit mass is written as
e = CvT .

GRMHD is numerically integrated with a conservative scheme. The particle number and mass are
conserved quantities (Gammie, McKinney, and Toth, 2003), which follow the conservation law

(nuµ);µ = 0 , (18)

where n is the particle number density and uµ is the four-velocity. The notation involving the semi-colon
subscript is used to denote a covariant derivative, V ν;µ = ∇µV ν .

The conservation of energy-momentum including all contributions by the perfect fluid and electromagnetic
field can be written succinctly as

Tµν;ν = 0 . (19)

The fluid part of the stress-energy tensor depends on the internal energy U , pressure P , and density ρ in
the form

Tµνfluid = (ρ+ U + P )uµuν + Pgµν . (20)

Ideal MHD simplifies the generalized Ohm’s law, neglecting resistivity, anisotropy, electron inertia, and the

5



Hall term proportional to J ×B, obeying the relationship

E + v ×B = 0. (21)

In the rest frame of the fluid, the electric field goes to zero because of the high conductivity of the fluid.
Thus, the electromagnetic part of the stress-energy tensor can be written as

TµνEM = b2uµuν +
1

2
b2gµν − bµbν , (22)

where bµ is a magnetic field four-vector written in Lorentz-Heaviside units and defined as

bµ ≡ −1

2
εµνκλuνFλκ, (23)

with Fµν representing the electromagnetic field tensor and εµνκλ is the Levi-Civita tensor. Evolution of the
electromagnetic field is governed by Maxwell’s equations and the conserved Faraday tensor,

Fµν;µ = 0. (24)

In Lorentz-Heaviside units, factors of 4π no longer appear explicitly in Maxwell’s equations. Altogether, the
full conserved stress-energy tensor for the system is the sum of the fluid and electromagnetic parts,

TµνMHD = TµνEM + Tµνfluid

=
(
ρ+ U + P + b2

)
uµuν +

(
P +

1

2
b2
)
gµν − bµbν .

(25)

2.2 Implementation

The GRMHD simulation proceeds by taking discrete time steps while updating a set of conserved variables
and a set of “primitive” variables, which are used to model the accretion flow. The conserved variables are
calculated with fluxes across a meshed geometry using the finite volume method (Porth et al., 2017). This
converts all volume integrals containing divergence terms into surface integrals by the divergence theorem.
There exists an analytic function relating the primitive variables to the conserved variables, but inverting
the relationship requires a multi-dimensional Riemann solver.

The initial conditions of the simulation contain the Fishbone-Moncrief magnetised torus (Fishbone and
Moncrief, 1976) supported by centrifugal and pressure forces, wherein magneto-rotational instability (MRI)
develops after an initial perturbation of the magnetic field in the torus. MRI provides the turbulent stresses
and angular momentum transfer between particles connected by magnetic field lines (Balbus and Hawley,
1991). The effect leads to an amplification of the magnetic field, which drives accretion onto the black
hole. Over time, the accretion flow reaches a quasi-stationary state characterised by equilibrium between
the in-flow and out-flow of material.

2.3 Accretion Flow Structure

While in the quasi-stationary state, distinct regions of the black hole accretion disk can be identified by the
mass density ρ, magnetisation σ, and plasma beta β profiles. The magnetisation represents the density of
magnetic moments and is expressed as

σ ≡ b2

ρ
, (26)

where b2 = bµbµ is a contraction of the magnetic field four-vector. The plasma beta is a ratio of the plasma
and magnetic pressure

β ≡ Pgas

Pmag
, (27)
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where Pgas = nkBT and Pmag = b2/2. The ratio indicates whether it is the field which drags the plasma
motion for small plasma beta, or the plasma drags the field for large plasma beta.

Figure 2: Schematic showing a cross-sectional slice of the magnetised torus where the black hole spin
parameter is 0.9375. The magnetic field lines are shown in white. The left panel shows the large scale
accretion structure and the right panel is zoomed into the central region, where the white semi-circle indicates
the radius of the event horizon. The figure clearly shows the distinct black hole accretion regions: disk
(yellow), wind (orange and purple), and jet (black). Within the jet funnel, the magnetic field lines are
ordered and point along the black hole rotation axis. In the wind and accretion disk, the magnetic field lines
are turbulent. Figure is obtained from Goddi, 2016.

After a long time-evolution of the GRMHD simulation, the disk reaches a quasi-stationary state. Near the
poles of the black hole rotation axis is a low density outflow region characterized by jets of highly relativistic
particles indicated by the dark region in Fig. 2. The jet is an evacuated region of low density characterised
by a high magnetisation and low plasma beta. The accretion disk makes up the inflow region perpendicular
to the rotation axis; it is characterized by high density, viscosity, plasma beta, and comparatively low
magnetisation. The space between the optically thick disk and the low density jet has intermediate values
for density, magnetisation, and plasma beta, but it is separated from the jet by a thin boundary called the
sheath Goddi, 2016.

3 General-Relativistic Radiative Transfer

3.1 Radiative Transfer

The variation of specific intensity along a ray incorporates effects from emission and absorption (Rybicki
and Lightman, 1986)

dIν
ds

= −ανIν + jν , (28)
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where Iν is the specific intensity, αν is the absorption coefficient, and jν is the emission coefficient. The
subscript ν indicates a dependence of each of these terms on the frequency.

By defining the optical depth dτν = ανds and the source function as a ratio of the emission and absorption
coefficients Sν ≡ jν

αν
, the radiative transfer equation can be rewritten as

dIν
dτν

= −Iν + Sν , (29)

where the following is a solution for the intensity at a specified optical depth if the source function is constant:

Iν(τν) = Sν + (Iν(0)− Sν) e−τν . (30)

In practice, the source function is not constant and must be solved numerically. Before the equation can be
applied to black hole accretion disks, the radiative transfer equation must be written in covariant form for
relativistic particles in arbitrary spacetime geometry (Younsi, Wu, and Fuerst, 2012). As photons have zero
mass, the GRRT equation can be expressed as

dI
dλ

= −kβuβ
∣∣∣∣
λ

(
−α0,νIν +

j0,ν
ν3

)
, (31)

where the Lorentz-invariant intensity I is related to specific intensity Iν by I = Iν/ν
3. As indicated by

the subscript “0”, both α0,ν and j0,ν are evaluated at the local rest frame of the fluid. Aberration terms
resulting from the radiative transfer equation for particles with mass are ignored and the four-momentum
of a massless particle is denoted by kα. This formulation of the radiative transfer equation can be applied
to calculate the emission from accreting spinning black holes.

3.2 Radiation Processes

Synchrotron and Bremsstrahlung

Accretion flows around Kerr black holes produce emission from accelerating charged particles (Luminet,
1979; Morgan et al., 2007) and are divided into cold or hot classes depending on the opacity of the disk
(Yuan and Narayan, 2014). Cold accretion is optically thick with high mass accretion rates, sometimes close
to the Eddington rate. They describe many of the luminous AGNs in the Universe. Hot accretion flows
are optically thin with low radiative efficiency, similar to Sgr A*. Ionized plasma in magnetic fields, which
are present around accreting black holes, produce bremsstrahlung and synchrotron radiation. However, rel-
ative to bremsstrahlung, synchrotron is expected to be the dominant mechanism for radiation in accretion
disks around Kerr black holes because of the low number density in the accretion plasma. Synchrotron
radiation is a single-body process scaling with one factor of the number density, whereas bremsstrahlung is
a two-body process with a quadratic dependence on the number density (Abramowicz and Fragile, 2013).
At the observation frequencies of interest in the sub-mm wavelength, the emission from the bremsstrahlung
process is insignificant compared synchrotron emission. Therefore, the bremsstrahlung radiation is omitted
in simulations of the accretion disk emission shown in Section 4.

For synchrotron radiation, free electrons are accelerated by magnetic fields, causing them to travel in
helical trajectories described by a characteristic precessional Larmor frequency and radius (Rybicki and
Lightman, 1986). For relativistic velocities, it is useful to define the velocity as β ≡ v/c and the Lorentz

factor γ ≡ 1/
√

1− β2. The Larmor angular frequency is

ωB =
eB

γmec
, (32)

where B is the magnitude of the magnetic field, and e is the electron charge.The Larmor radius is

rL =
γmec

2β

eB
, (33)
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The contribution of electrons to the radiation from the accretion disk is more significant than that of
ions in the plasma because of their lower mass mp/me ≈ 1836, so electrons experience a greater acceleration
and angular frequency in a tighter gyroradius. In the GRMHD simulation discussed in Section 2, protons
and electrons are assumed to be thermally coupled by a fixed ratio related to temperature. This assumption
is valid for slow-moving accretion flow near the accretion disk, because there is enough time for particles
to interact. But this assumption is inaccurate for fast-moving, highly magnetised, and relativistic jets near
the poles of the Kerr black hole. For Sgr A*, large scale jets are not observed and observations of Sgr A*
fit multiple disk-dominated models (Issaoun, 2019). Therefore, the assumption of thermal coupling between
the protons and electrons is acceptable.

Recalling the relativistic Larmor formula for the power radiated by an accelerated electron,

P =
2e2γ6

3c

[
β̇2 −

(
β × β̇

)2
]
, (34)

the power output of the synchrotron radiation can be expressed as

Psyn =
4

3
σTcβ

2γ2UBsin2α, (35)

where UB is the magnetic energy density and α is the pitch angle defined between the velocity β of the
electron and the magnetic field direction.

Inverse Compton Scattering

Compton scattering is the inelastic collision and subsequent exchange of energy and momentum between
particles and photons, where usually the interaction is between an electron and a photon. Forward Compton
scattering is when part of the photon’s energy is transferred to the electron, which increases the photon
wavelength. The relationship between the change in wavelength, ∆λ, in relation to the scattering angle, θ,
is described by

∆λ =
h

mec
(1− cos θ) , (36)

where h is the Planck constant, and θ is the scattering angle. The quantity h/mec is called the Compton
wavelength.

In inverse Compton scattering, photons are up-scattered by highly relativistic electrons and gain signifi-
cant energies, shifting them to higher frequencies. This can be seen in the full spectral energy distribution
(SED) of Sgr A*, Fig. 8, where local maxima in flux density appear at high frequencies between 1013 and
1018 Hz. The higher frequency peaks show that photons around the 600 GHz global flux density maximum
have been up-scattered to higher energies; these are sometimes called Comptonized photons. As seen in
Fig. 8, the Comptonized photons can be neglected for EHT observations made in the 230 GHz frequency
band, denoted by the highlighted region, so these effects are not considered in Sections 2 and 4.

A similar relation to the synchrotron power output in eqn. (35) can be written for inverse Compton
scattering by replacing the magnetic energy density with the radiation field energy density, Urad, obtaining

PIC =
4

3
σTcβ

2γ2Urad, (37)

where the expression is valid for the scattering of a single electron.

3.3 Transforming From Code to Physical Units

Physical quantities in the code are derived from the choice of MBH = 1, which determines the character-
istic length scale and time scale in the system. The length scale is equivalent to the gravitational radius
Lunit = rg and the time-scale is related to the light-crossing time tunit = rg/c. Then, the mass unit is
equal to the mass accretion rate in normal centimetre-gram-second (cgs) units multiplied by the time-scale
Munit = Ṁcgs × tunit. The physical mass accretion rate in cgs units, Ṁcgs, is a free parameter set as an
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initial condition to achieve a desired flux at a certain frequency. Further explanation is provided in Section 4.

The density scale is a combination of the previously defined units ρunit = Munit/L
3
unit and the number

density is related to the density by assuming the plasma is composed purely of ionized hydrogen nunit =
ρunit/(me + mp). The code units for the square of the magnetic field strength is represented by B2 =
c2ρunit(me +mp). To convert code units into physical units related to observation, dimensionless quantities
can be rescaled back into cgs quantities. The magnetisation is one such example where σ = b2code/ρcode =
b2cgs/ρcgs, such that multiplying the value of magnetisation obtained in the code units by the density in cgs
units would result in the square of the magnetic field strength in cgs units. Similarly, gravitational radii can
be converted into an angular size; observing Sgr A* with an estimated mass of MBH ≈ 4.5× 106M� and an
observing distance of d = 8.5 × 103 pc, one gravitational radius scales with angular size as 1 rg ≈ 5.29µas.
This result is used in Figs. 6, 7, and 10 to scale the simulated images to the angular size of Sgr A*.

4 Black Hole Shadow

It has been predicted for many years (e.g., Luminet, 1979; Falcke, Melia, and Agol, 2000) that black holes
cast a “shadow” against the background sky, as seen by a distant observer. In particular, the properties of
the shadow depend sensitively on the black hole mass and spin, as well as the terrestrial observer’s orienta-
tion with respect to the black hole.

In the general-relativistic description of a Schwarzschild black hole, the aforementioned unstable photon
orbit defines the region of space where photons are forced to travel unstable circular orbits at its boundary.
For Kerr black holes, the unstable photon orbits precess and are dependent on the angle of orbit around the
rotation axis. Due to the orbital instability, perturbations on the photon cause it to either fall into the black
hole or escape. Inside the region bounded by unstable orbits, photons are unable to escape the black hole’s
gravitational potential, but photons outside can escape and reach distant observers. The black hole shadow
can be defined as the geometric projection of the unstable photon orbit boundary onto the observer plane
(Dokuchaev and Nazarova, 2018). Observationally, the black hole shadow can appear as a dark axisymmetric
region within a bright background (Repin et al., 2018).

For a Schwarzschild black hole, the impact parameter, b, defining the radius of the black hole shadow
is a constant b =

√
27M (Shaikh et al., 2019). However, the shadow radius for a Kerr black hole has a

dependence on the spin of the black hole itself and the observer’s inclination angle; whereas the mass of the
black hole determines the absolute size of the shadow rather than its shape. The same effect occurs when
varying the observer’s distance closer to or further from the black hole. When the observer is moved closer,
the size of the shadow appears larger, such that the black hole mass appears greater. Similarly when the
observer is moved further away, the size of the shadow shrink and the black hole mass appears lower. The
shape of a Kerr black hole shadow is well-defined by its physical parameters and can be described by an
analytical solution (e.g., Grenzebach, Perlick, and Lämmerzahl, 2014; Shaikh et al., 2019). In vacuum, the
analytical form can be written in Cartesian coordinates as (Grenzebach, Perlick, and Lämmerzahl, 2014)

x(rp) = −2 tan

(
θ(rp)

2

)
sin (Ψ(rp)) ,

y(rp) = −2 tan

(
θ(rp)

2

)
cos (Ψ(rp)) ,

(38)

where θ(rp) and Ψ(rp) are celestial coordinates and functions of the radius parameter. The celestial coordi-
nates are spherical coordinates defined for the observer by the tangent vector

λ̇ = α (−e0 + sin θ cos Ψe1 + sin θ sin Ψe2 + cos Ψe3) , (39)

where α is a scalar factor and each light ray λ(s) has a coordinate representation (t(s), r(s), ϑ(s), φ(s)). The
set of coordinates (e0, e1, e2, e3) are an orthonormal tetrad chosen to describe the time and position of the
observation event.
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Figure 3: Three-dimensional plot displaying photon trajectories where coloured paths represent photons
captured by the black hole and black paths represent escaping photons. The black hole spin parameter is
0.9375 (close to maximal spin). The trajectories was calculated from vacuum integration of geodesics around
the black hole spacetime as part of the GRRT routine.

The method used to obtain the black hole shadow in Section 4 is to use vacuum integration of geodesics
around the Kerr black hole curved spacetime and perform reverse ray tracing from the distant observer to
the black hole, noting when the photon is captured or can escape. This is shown in Fig. 3 and Fig. 4, with
the observer placed at a distance of r = 1000 rg. The three-dimensional boundary between the captured
and escaping photons defines the photon sphere, which can be seen as the region of space bounded by the
coloured photon trajectories in Fig. 3.
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Figure 4: Two-dimensional plot of photon trajectories where coloured paths represent photons captured by
the black hole and black paths represent escaping photons. The central black circle indicates the extent of the
event horizon. The black hole in the left panel has a spin parameter of 0 and in the right panel, the spin
parameter is 0.9375, hence the left-right asymmetry. The right panel shows the Lense-Thirring effect, where
incoming photons in the counter-rotating direction are dragged into the same direction of rotation as the black
hole within its ergosphere, whereas the left panel shows symmetric trajectories between the left and right rays.
The trajectories were computed from vacuum integration of geodesics around the black hole spacetime as part
of the GRRT routine.

One of the parameters affecting the shape of the black hole shadow is the black hole’s spin. As the spin
increases, the shadow becomes more asymmetric due to frame-dragging and the height of the shadow along
the rotation axis is affected by the observer’s inclination angle.

By disentangling the effects of spin and observer’s inclination angle on the shadow shape, it is theoret-
ically possible to infer the black hole’s physical parameters. The extent of the displacement in the shadow
from the rotation axis is largely dependent on the spin (Li and Bambi, 2014), but the position of the rota-
tion axis is difficult to determine observationally. Furthermore, black hole shadows of similar size and shape
can be found for a variety of black hole mass and spin parameters. This degeneracy of parameters makes
inferring spin from shape of the black hole shadow impractical. However, if the position of the black hole
mass center can be determined, it is possible to measure the spin parameter by defining a shadow axis which
can be observationally determined (Takahashi, 2004). The details of this method are described in Section 4.3.

Apart from observationally measuring the black hole physical parameters, the black hole shadow may
also be used as a way to test general relativity against alternative theories of gravity. However, with
current available methods and observations of Sgr A* shadow at 230 GHz alone, the results show that it
is difficult to distinguish Kerr and dilation black hole spacetimes (Mizuno et al., 2018). More advanced
image reconstruction methods, expansion of observation bandwidth and frequency, as well as the addition of
telescopes to VLBI will improve the ability to test general relativity against alternative theories by observing
black hole shadows.

4.1 Shape of the Black Hole Shadow

In the left panel of Fig. 5, the shadow asymmetry grows with increasing spin in a direction that depends
on prograde or retrograde rotation, but the vertical width of the shadow does not vary. In the right panel,
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the height of the shadow expands with increasing observer inclination angle. Shadows of negatively spinning
black holes are asymmetric in the opposite direction compared to shadows of positively spinning black holes,
but the major and minor axis of the black hole shadow are equivalent for spins of a different sign with
the same magnitude. Furthermore, a Schwarzschild black hole shadow is circular when viewed from any
inclination angle, whereas a spinning black hole shadow is circular only when observed along the rotation
axis. This information can be used to infer physical properties from observations of black hole shadows,
discussed in Section 4.3.

Figure 5: Black hole shadows with varying spin (left panel) and varying observer’s inclination angle (right
panel), as seen by a distant observer. The black hole shapes were numerically computed by reverse ray
tracing from the observer to the black hole, noting the boundary between captured and escaping photons for
an observer placed at a distance r = 1000 rg away from the black hole.

The Black Hole Accretion Code (BHAC) is used to produce the Kerr black hole accretion simulation
(Porth et al., 2017). Similar to the discussion in Section 2, the BHAC code solves equations of ideal GRMHD
in arbitrary spacetime geometries using a more refined and efficient finite volume method. Since photons
travel along null geodesics of the spacetime geometry, producing images of the black hole requires solving
geodesic equations of motion in tandem with the radiative transfer equation (e.g., Younsi, Wu, and Fuerst,
2012). The images of Kerr black holes in this section are created using the GRRT code BHOSS (Younsi,
2019). Each image represents a snapshot of the black hole accretion emission evaluated at time t = 104M
in the code units described in Section 3.3. The time is chosen to be long enough for the GRMHD simulation
to have evolved into a quasi-stationary state. Variations in the flux with time are omitted for brevity and
will be discussed in the MSc thesis.

There is a relationship between the observed flux with the spin and inclination angle, but the mean
historical flux density from Sgr A* is observationally constrained as F = 3.4 ± 0.5 Jy (Bower, 2015). The
images shown in Fig. 6, and 7 have each been normalized to Sgr A*’s observed total flux by varying the mass
accretion rate Ṁcgs, which is a free parameter in the modelling.

In Fig. 6, the effect of varying the observer’s inclination angle is compared and the numerically calculated
black hole shadow shape is outlined by the green dashed line. The spin was chosen to be a = 0.9375 to
accentuate the asymmetric and non-circular black hole shadow shape as compared to a Schwarzschild black
hole. The four inclination angles, θobs, range from 5◦ to 90◦ as indicated in the top left corner of each
panel. The angle 0◦ is not shown because there is a polar singularity in the chosen coordinate system.
In these images, the emission is approximately rotationally uniform when observed face-on down the black
hole rotation axis. But as the inclination angle increases up to 90◦, the emission of the accretion travelling
toward the observer increases in intensity compared to the accretion flowing away from the observer. When
the accreting material is flowing toward the observer, relativistic aberration causes photons to be emitted
in the direction of travel, and the Doppler effect blue-shifts photons into higher energy. The opposite effect
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occurs for accreting material travelling away from the observer, where photons are emitted away from the
observer’s direction and red-shifted. The net result is that the flux ratio between the brighter and darker
limbs of the black hole depend sensitively on the accreting material’s relative velocity. The effect is maximal
when observed edge-on at 90◦, where the intensity of the darker limb is insignificant compared to that of the
brighter limb, and the observed flux is dominated by gravitational lensing of the accretion emission. These
black hole shadow images represent predictions of the image to be observed by the EHT, and are calculated
by fitting the total flux at 230 GHz (EHT observing frequency) to the observed flux of Sgr A*.

Figure 6: Simulated Sgr A* images with spin a = 0.9375 and inclination angle ranging from 5◦ to 90◦. The
green dashed line denotes the black hole shadow boundary in vacuum. As will be shown in Section 4.2, the
beam size is around 26µas. These simulated images were created using BHAC code to evolve the accretion
structure using GRMHD and BHOSS code to solve equations of GRRT.

Negatively spinning (retrograde) black holes are predicted by AGN stochastic evolution models having
antiparallel angular momenta between the black hole and its accretion disk, produced by misalignments
which may have originated from the initial supernova kick (e.g., Dauser et al., 2011; Volonteri et al., 2005).
Misaligned black holes eventually evolve to one of the parallel or antiparallel stable configurations of disk
and black hole angular momentum; the re-alignment of the black hole with its accretion disk is thought to
be governed by the Bardeen-Petterson effect (Bardeen and Petterson, 1975).

In the case of negatively spinning black holes, the intrinsic size of the accretion flow is expanded to
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more than twice as large as the images for black holes with positive spin (prograde). One of the reasons is
that the radius of the ISCO, which denotes the inner boundary of the accretion disk, has increased out to
rISCO ≈ 8.8 rg corresponding to ∼47 arcseconds according to eqn. (16) for Sgr A*.

Figure 7: Simulated Sgr A* images with varying spin parameter. The inclination angle is set to θ = 60◦

for all four panels. The shape of the black hole shadow becomes more asymmetric as the spin |a| tends to 1.
These simulated images were created using BHAC code to evolve the accretion structure using GRMHD and
BHOSS code to solve equations of GRRT.

By visualising the images obtained from varying the spin parameter for a fixed inclination angle as in
Fig. 7, black holes of drastically different spins can be compared directly. Qualitatively, the images appear
similar which may lead to a degeneracy in the measurement of spin as will be discussed in Section 4.3.
However, the shape of the black hole shadow varies with spin. Furthermore, the ratio of the flux from the
brighter and darker limbs of the black hole changes as well, where this difference is more pronounced for
higher spin parameters. The scale of the emission also differs between spin parameters where the images
for the negative spin and zero spin have much larger emission regions compared to the images for positively
spinning accretion flow.
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4.2 Observing the Black Hole

Very-Long Baseline Interferometry

The EHT employs sub-millimeter very-long baseline interferometry (VLBI) by taking data from an array of
independent radio observatories around the world to create a single higher resolution image. Observations
are made in the radio 230 GHz frequency band coinciding with the frequency at which the source, Sgr
A*, is optically thin. In addition, its flux density as shown in the SED, Fig. 8, is close to its maximum.
Furthermore, the 230 GHz frequency is located in the high atmospheric transmission regime called the radio
window (Schieven, 2018). For these reasons, the 230 GHz frequency band used for the EHT observations is
ideal for observing Sgr A*.

Figure 8: The SED of Sgr A*, where the highlighted column indicates the position of the VLBI 230 GHz
observing frequency, which is close to the flux maximum. The orange solid lines, green dashed lines, and
red dash dotted lines represent the contributions of the synchrotron self-Compton, external Compton, and
synchrotron broken power-law radiation processes respectively. The figure was obtained from Trap et al.,
2010.

In Fig. 8, the grey measurements are associated with the quiescent state. The VLBI observation wave-
length band is targeted in this region where the flux is close to the maximum value, and where there are
upper-limit measurements in the far-infrared and mid-infrared. The quiescent luminosity of Sgr A* is ap-
proximately ten orders of magnitude below the Eddington luminosity. This low luminosity may be a result
of a low accretion rate and an accretion flow which is radiatively inefficient. The blue points are upper-limit
measurements provided by the Very Large Telescope and the International Gamma-ray Astrophysics Labo-
ratory. The blue X-ray bow-tie measurements indicate the slope of the SED (Trap et al., 2010).

The contribution to the SED from synchrotron self-Compton, external Compton, and synchrotron bro-
ken power-law radiation processes are modelled in Fig. 8. Synchrotron self-Compton, indicated by the solid
orange lines, is an effect which is produced when electrons scatter their own synchrotron emission. Since
all systems producing synchrotron radiation are up-scattered by their own electron population, synchrotron
self-Compton is an important process for a self-consistent treatment of the accretion emission in strong
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magnetic fields. The three models together provide a good fit for the flaring in the higher frequency regime
of the SED (Trap et al., 2010).

Figure 9: Map of EHT array sites. Credit: EHT Collaboration, https://eventhorizontelescope.org/science.

Figure 10: Plot of the VLBI best resolution beam
size compared to a simulated image of Sgr A* with
spin parameter a = −15/16 and observer’s inclination
angle θ = 5◦. The beam is represented by the filled
green circle with a 26µas radius.

In VLBI, each of the telescopes are di-
rected towards the target and synchronised us-
ing precise atomic clocks. Data represen-
tations of an image are collected in Fourier
space. Large volumes of data in hard drives
are shipped from the various telescopes to MIT
Haystack Observatory and Max Planck Insti-
tute for Radio Astronomy. At these loca-
tions, the data is cross-correlated together to re-
construct an image. The real image will be
contaminated by various effects from interstel-
lar medium scattering, atmospheric scattering,
and turbulence, but certain pipelines and data
from models of the interstellar medium can be
used to correct for these effects (Bouman et al.,
2016; Johnson et al., 2017). The EHT ar-
ray shown in Fig. 9 is composed of a global
network of radio observatories in many coun-
tries located in the Northern and Southern Hemi-
spheres. By increasing the baseline distance,
the EHT simulates a telescope with an effec-
tive diameter of the order of the Earth’s diame-
ter.

Located 26,000 light years away from the Earth, imaging Sgr A* on event horizon scales requires an
angular resolution R ≈ 53µas. The resolution of a telescope is proportional to the wavelength of observation
and the size of the telescope R = kλ/D, where λ is the wavelength, D is the diameter of the telescope, and k
has a value of 1.22 for diffraction through a circular aperture. The maximum theoretical resolution of EHT
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at 230 GHz can be approximated by considering D ≈ 12, 742 km, the Earth’s diameter. The best resolution
at 230 GHz is then R ≈ 26µas 1, enough to observe not only Sgr A* at 53 µas, but also the accretion disk
around the supermassive black hole at the center of galaxy M87 where R ≈ 22µas. A comparison of this
beam size with a negatively spinning black hole is shown in Fig. 10, where the beam is approximated as
circular with a diameter of 26µas. As seen in Fig. 9, the maximum baseline distances differ between the
North-South and East-West cardinal directions, where longer baselines can resolve smaller scale structures.
Therefore, the real observing beam is elliptical rather than perfectly circular. Moreover, measurements
obtained from observing an object as the Earth rotates over the course of a day form elliptical tracks in the
image’s spatial frequency plane (Bouman et al., 2016). In all, taking into account telescope resolution from
VLBI and correcting for scatter broadening from the interstellar medium, there is a strong expectation that
Sgr A* can be directly imaged (Falcke, Melia, and Agol, 2000).

Image Reconstruction

Image reconstruction from data obtained by the VLBI telescope array presents a number of challenges. By
nature, the data is extremely sparse with low spatial frequency coverage compared to a telescope with a disk
size of the Earth’s diameter, which the EHT is simulating. Furthermore, the time delay between photons
obtained by telescopes in the array must be accounted for, so all the telescopes are synchronised with precise
atomic clocks. Despite this, inhomogeneities in the atmosphere introduce noise and delays in the light speed
which affects the phase of measurements. There is also an infinite number of possible images which fit
the data, so some assumptions must be made about what a reasonable image should look like. To tackle
these challenges, an algorithm called CHIRP was developed in 2016 using a Bayesian approach which has
demonstrated good results with low signal-to-noise ratio (SNR) and extended emission in publicly available
data and synthetic experiments. The algorithm parameterises the resulting continuous image with a discrete
number of terms, accounts for a Gaussian noise distribution, and incorporates an iterative optimization
framework for energy minimization, called the maximum entropy method (MEM) (Bouman et al., 2016).

4.3 Measuring the Black Hole Spin

One of the established ways of measuring the black hole spin is by the continuum-fitting method. Because
the radius of the ISCO is highly dependent on spin as well as prograde or retrograde rotation, fitting the
X-ray continuum spectrum of the black hole emission can provide an estimate for the inner edge of the
accretion disk. Assuming a sharp truncation of the accretion disk at the ISCO radius, the method works by
fitting the broadband X-ray continuum, including relativistic, self-irradiation, limb-darkening, and Comp-
tonization contributions (McClintock et al., 2011). However, the limitations are that accurate measurements
of the distance d to the source, mass M of the black hole, and inclination θobs of the accretion disk must
be firmly established beforehand. In addition, the observed flux Fobs emitted locally by the disk has to be
obtained, presenting observational challenges such as maintaining high SNR, subtracting contamination by
other sources, consideration of flux diminution by the intergalactic or interstellar medium, etc. For these
reasons, it is useful to develop an independent way of measuring black hole spin from direct imaging of the
black hole shadow. In theory, because the shape of the black hole shadow depends sensitively on the spin
parameter, it is possible to infer the spin from the shape of the shadow. In practice, the inclination angle
is a confounding variable resulting in observational degeneracies where images of vastly different spin can
appear similar in shape if the inclination angle is adjusted to compensate.

One of the ways to measure spin from the black hole shadow is to introduce an observable bisector axis
named the shadow axis. The shadow axis is defined as the bisector perpendicular to the axis of the black hole
shadow’s maximum width (Takahashi, 2004). This shadow axis is defined for the observer, so its position can
easily be determined from observations of black holes with accretion disks. The minimum distance between
the mass center of the black hole and the shadow axis is strongly dependent on the spin parameter. Thus as
long as the black hole shadow is observed and the mass center is known, it is possible to measure the black
hole’s spin parameter.

1The angular resolution is comparable to observing an orange on the surface of the moon with the naked eye.
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In Section 4.2, the feasibility of observing a black hole shadow using VLBI was established. With regards
to determining the position of the black hole mass center, there are various methods for Sgr A*. Since Sgr
A* in the Galactic Center is close enough to the Earth to resolve stellar orbital trajectories, the position of
the mass center can be measured by observing stellar motions around the black hole. Measurements of the
black hole accretion disk brightness distribution can also be used to constrain the position of the center of
mass by comparing the observations against models such as the calculations made by Luminet (Luminet,
1979). However, parameters of the fit include not only the position of the mass center, but also position
and orientation of the rotation axis. If the rotation axis can be determined, axis ratios between the vertical
extent and the width of the black hole is an indicator for the magnitude of the spin. This calculation may
be performed by fitting the shadow with a circle of radius Rs using three points as a first approximation,
and then defining a distortion parameter δs ≡ Dcs/Rs, where Dcs is the difference between the maximally
“dented” side of the observed shadow with the circle approximation (Li and Bambi, 2014). Because the dent
is more pronounced for greater spin, the distortion parameter can be an indicator for the black hole spin.
From the Luminet calculations, the best-fit parameters may be used to measure the black hole spin with the
shadow axis and the mass center, or the position of the rotation axis may also be used to determine spin.

Although there are degeneracies in the inclination and spin parameters when observing extragalactic
SMBH, the situation is different for Sgr A* due to its relative proximity to Earth. Specifically for observing
Sgr A*, the inclination angle between its rotation axis and the observation from Earth is expected to be
constrained within 45◦ and 135◦, because the solar system lies in the thin disk of the Milky Way and
the SMBH in the Galactic Center is expected to share the overall angular momentum of the Milky Way.
Measurements made of Sgr A*’s mass from stellar orbits and distance measurements fix the expected angular
size of its black hole shadow, because the angular size of the shadow depends entirely on the black hole mass
and distance to the source. From Fig. 5, when the mass and distance are fixed, measuring the size of the
black hole shadow can be used to determine the observation inclination angle more precisely. Therefore, if the
inclination angle can be measured, the spin can be estimated from the Sgr A* black hole shadow asymmetry
by fitting a model of the shadow shape, varying the spin for a fixed inclination angle. Using these methods,
there is a reasonable expectation that the image of the Sgr A* shadow can be used to estimate the black
hole’s spin parameter.

5 Remarks and Conclusion

Using self-consistent numerical simulations involving GRMHD and GRRT, this research essay presents re-
alistic representations of the dynamical and turbulent nature of accretion flow around Kerr black holes. It
was shown that the shape of the black hole shadow has strong dependencies on the black hole spin and
observer’s inclination angle, such that a direct image of black hole accretion is a potential source of in-
formation for investigating the black hole’s physical characteristics. Real images of the black hole shadow
are obfuscated by scattering from the interstellar medium and atmospheric turbulence. Observing Sgr A*
through the galactic disk introduces a large column density of particles which influence the observed image.
However, models which can correct for these effects are considered during image reconstruction. Convolving
the simulated image with the elliptical VLBI beam provides a realistic prediction of the observation in the
correct resolution. When the real image of the Sgr A* black hole shadow is released, it is possible to compare
the result with simulated images to better constrain black hole mass and spin. Furthermore, the black hole
shadow may offer another method for testing general relativity against alternative theories of gravity.

The thesis project which follows this essay will investigate the effects of varying the electron distribution
function and proton-electron temperature coupling on the accretion dynamics at the edge of the black hole
event horizon. With the GRMHD and GRRT simulations used in this report, the project will also investigate
time variability and temporal spectral variations of the emission from the accretion in-flow. The relationship
between the mass accretion rate and the total flux of accretion emission will also be discussed in greater
detail. Furthermore, realistic predictions of the obfuscated image including effects of interstellar scattering
and the image reconstruction process will be compared to the real image to be published in April 2019.
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