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Abstract

The slow decay of the orbits of binary systems provide indirect evidence for gravitational waves.

In this Report, we derive a formula for the energy lost to gravitational waves by a general binary

system with masses M1 and M2, orbital period T , and orbital eccentricity e, using the quadrupole

formula. The result is expressed in terms of the reference case of equal masses moving in circular

orbits with the same period T , multiplied by two independent correction factors, respectively to

account for the unequal masses and the eccentricity. The latter, when written suitably as a power

series in e, turns out to terminate. The result is consistent with the observed rate of decay of the

binary pulsar system PSR 1913+16. The eccentricity effect is large: a factor of ∼10 for moderate

values of e.

Two approaches were used to derive the result. The first approach, in the time domain, integrates

the power expression (involving the square of the third time derivative of the quadrupole moment)

over the period. This method shows clearly why the result is a polynomial in e.

The second approach analyzes the quadrupole moment in terms of harmonics. Quadrupole

radiation goes as ω6, so the nth harmonic contributes with a factor n6. It was found that the

mean n increases rapidly with e, with a value of 8.3 for the eccentricity of PSR 1913+16 (e 0.62),

compared to n = 2 for a circular orbit. The dominance of the high harmonics provide a physical

understanding for the large eccentricity factor.
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I. INTRODUCTION

A. Gravitational waves

In February 2016, LIGO (Laser Interferometer Gravitational-Wave Observatory) an-

nounced that a gravitational-wave signal was observed, which agreed with the waveform

predicted by general relativity for the in-spiral and merger of two black holes [1]. Four

months later, LIGO announced the second detection of a pair of coalescing black holes [2].

The discovery has important implications including direct detection of gravitational waves,

explicit observation of black holes and verification of general relativity.

But before LIGO, there was already indirect evidence for gravitational waves. In 1974,

Hulse and Taylor discovered the binary pulsar system PSR 1913+16. The most important

feature was an observed slow decay of the orbit [3], attributed to the loss of energy to gravita-

tional waves [3]. The observed rate of decay was found to be consistent with the prediction

of general relativity based on the radiation of gravitational waves, which established the

existence of gravitational waves indirectly. Hulse and Taylor later shared the Nobel Prize

in Physics “for the discovery of a new type of pulsar, a discovery that has opened up new

possibilities for the study of gravitation” [5].

B. Hulse–Taylor pulsar

PSR 1913+16 has a pulsar period of 59 ms and is 21 000 lt-sec away from the Earth [3].

Pulse arrival times showed an anomaly of about 3 s, repeating every 7.75 hr. This means

the distance from us is varying be 3 lt-sec; in other words the pulsar is moving in an orbit
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with orbital diameter projected along the line of sight of about 3 lt-sec and orbital period

T = 7.75 hr [4]. The observations also indicated that the pulsar was orbiting with another

unseen star (the companion, in fact a neutron star [4]) about their common center of mass

(CM).

The orbit of the pulsar must be an ellipse; denote the semi-major axis as a1 and the

eccentricity as e. The distance of 3 lt-sec is related to the projection of 2a1 onto the

line of sight. Detailed analysis of the anomaly gives the following orbit parameters [3]:

a1 = 3.24 lt-sec = 9.7× 108 m, e = 0.617, T = 7.75 hr = 2.79× 104 s. The companion is in

an orbit with semimajor axis a2 = 3.26 lt-sec, and of course the same eccentricity [6]. The

masses were determined to be M1 = 1.42 M�, M2 = 1.41 M�.

The most important observation for our purpose is the rate of orbit decay: −Ṫ = 76 µs/yr.

C. The key result to be explained

The decay rate is characterized by

α = − Ṫ
T

= 2.72× 10−9 yr−1 (1.1)

or in terms of the cumulative period shift ∆tc [4]:

∆tc = −(α/2) t2 (1.2)

Observation of PSR 1913+16 over decades yields the coefficient [4] α/2 = 4.3 s/decade2

consistent with (1.1). The purpose of this Report is to show that the values of α can be

correctly explained by gravitational radiation, using the orbital parameters introduced in

Section I B.

D. Quadrupole radiation

In classical electrodynamics, a system of oscillating charges will radiate power in the form

of electromagnetic waves. The monopole term is proportional to the total charge Q of the

system, which does not vary with time and therefore does not contribute to the radiation.

As long as the total charge is non-zero, it is possible to choose an origin such that the electric

dipole moment is zero [7]. Even if Q = 0, the analogue of the electric dipole moment in the
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gravitational case is related to the position of the center of mass, which cannot oscillate for

an isolated system. Also, the analogue of the magnetic dipole term is related to the angular

momentum, which again cannot oscillate. The next term is the electric quadrupole moment,

defined as [9]

qij =
∫

(3xixj − r2δij) ρ(x) d3x (1.3)

where ρ is the charge density. The power loss due to quadrupole radiation for a system

oscillating at a definite frequency ω, transferred to our notation, is

P =
1

360

1

4πε0

ω6

c5
∑
ij

|qij|2 (1.4)

where qij denotes the peak value of the quadrupole moment in its sinusoidal oscillations.

In an exactly analogous way, a system of oscillating masses will radiate power in the form

of gravitational waves. The formula for mass quadrupole radiation [7] can be guessed by

regarding ρ(x) as the mass density and using the mapping

1

4πε0
7−→ G (1.5)

The correct formula due to general relativity is actually 4 times this result obtained by the

naive mapping. Thus, the power radiated by mass quadrupole moment is

P =
1

90

Gω6

c5
∑
ij

|qij|2 (1.6)

where, in an analogous way, qij is the peak value of the mass quadrupole moment in its

sinusoidal oscillations.

All these formulas are based on the multipole expansion, and keeping only the leading

terms. For harmonic motion with an amplitude a, the multipole expansion is in powers of

ka = ωa/c, where k is the wavenumber and a is a characteristic size of the source [9]. Also,

the typical velocities are v ∼ ωa. Thus, the expansion parameter is

ωa

c
∼ v

c
(1.7)

We see that the multipole expansion is equivalent to the relativistic expansion in powers

of the factor v/c. In PSR 1913+16, this factor is around 10−3, small enough for the above

formulas to be accurate. For merging binaries, however, these arguments are only qualitative.
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E. Organization of this Report

The rest of this Report is organized as follows. Section II sets out the reference case with

equal masses in a circular orbit. Section III then shows that the general case involves two

independent factors, one for the inequality of the two masses, and one for eccentricity, and

evaluates the former. The eccentricity effect is then dealt with in Section IV; the key result

in (4.14) involves a simple prefactor and a polynomial of degree 4 in e.

The eccentricity effect is surprisingly large (a factor of ∼12 for PSR 1913+16, with

e ∼ 0.6), for which a qualitative understanding is sought. One conjecture is that this may

be due to high harmonics: quadrupole radiation goes as ω6 = (nΩ)6, Ω being the orbital

frequency; thus higher harmonics (absent for a circular orbit) contribute with a weight n6.

This conjecture is examined by evaluating the power radiated by each harmonic, in two

independent ways: first using a power-series expansion in e (Section V) and then using

numerical integration (Section VI). The former method encounters a subtle and intriguing

technical difficulty, but numerical evaluation does confirm that the large eccentricity factor

is due to high harmonics.

Concluding remarks are given in Section VII.

II. REFERENCE CASE

A. Definition and framework

The power radiated, P , will be expressed in terms of the analogous quantity P0 for a

reference case with the same orbital period. The latter consists of two equal masses, each

M , orbiting around the CM in a circle of radius R. The orbital period is

T = 4π

√
R3

GM
(2.1)

The general case has masses

M1,2 = M(1± f) (2.2)

moving in elliptical orbits of eccentricity e and the same period. Since by Kepler’s third

law the period is related to the average semi-major axis a = (a1 + a2)/2, it follows that the

reference case should be chosen with R = a.
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The task is then divided into two parts: (a) first to evaluate P0 (this Section), and (b)

then to evaluate the ratio P/P0 (next two Sections). The ratio can only depend on the

dimensionless quantities e and f , so

P

P0

= F (f, e) (2.3)

It will be shown in Section III that the ratio factorizes into the mass effect and the eccentricity

effect:

F (f, e) = Ff (f) · Fe(e) (2.4)

which will then be studied separately.

B. Evaluation of reference case

Let Ω = 2π/T be the angular frequency of orbital motion. Following Young [8], by

applying (1.3) to the case of discrete point masses, the qxx term of the quadrupole moment

is

qxx =
∑
α

Mα[3(xα)2 − (rα)2]

= 2M(3R2 cos2 Ωt−R2)

= 3MR2 cosωt+ const (2.5)

where the index α labels the particles with coordinates rα = (xα, yα, zα), rα = |rα|, and

ω = 2Ω. Since the two masses are identical, the system repeats itself every half cycle.

Therefore, ω is the frequency of the oscillation of the quadrupole moment, and hence of the

radiation. In other words, for this reference case with orbital frequency Ω, only the second

harmonic radiates. The amplitude of oscillation of qxx is

qxx = 3MR2 (2.6)

So

q2xx = 9M2R4 (2.7)

It turns out that each of qxy, qyx and qyy gives the same contribution. Therefore,

∑
ij

|qij|2 = 36M2R4 (2.8)
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The power radiated, according to (1.6), is thus

P0 =
1

90

Gω6

c5
· 36M2R4

=
2

5

GM2R4ω6

c5
(2.9)

Thus, for the reference case with R = a, the power radiated is P = 1.0× 1022 W.

III. FACTORIZATION AND MASS EFFECT

This Section deals with the mass effect, showing that it factorizes from the eccentricity

effect as a multiplicative factor Ff . Thus we consider two masses M1 and M2, and introduce

the dimensionless variable f by (2.2). Let rα (α = 1, 2) be the distance between Mα and

the CM [10]. By the definition of the CM,

(1+f) r1 = (1−f) r2

and hence

r1 = r (1−f) , r2 = r (1+f)

where

r =
1

2
(r1 + r2)

Applying (1.3), the quadrupole moment of a system of masses Mα at positions rα is given

by

qij =
∑

Mα

[
3xαi x

α
j − (rα)2δij

]
Applied to the present case, we have

qij = M(1+f)r21 hij(φ) +M(1−f)r22 hij(φ+ π)

where the non-zero elements of hij(φ) are

hxx = 3 cos2 φ− 1

hxy = hyx = 3 sinφ cosφ

hyy = 3 sin2 φ− 1

hzz = −1 (3.1)
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We see that hij(φ) = hij(φ + π), thus the factors related to φ are the same for both terms

and can be taken out:

qij = Mhij(φ)
[
(1 + f)r21 + (1− f)r22

]
= 2Mhij(φ)r2(1− f 2)

The elements of the quadrupole moment qij are to be regarded as functions of time t, and

its time-varying parts lead to radiation. Although the time t and the orbital position φ are

related in a complicated way which involves the eccentricity: t = t(e, φ), or φ = φ(e, t), the

masses enter only through the last factor above. Thus we see that the mass effect factorizes,

with a factor

Ff = (1− f 2)2 (3.2)

IV. ECCENTRICITY EFFECT

A. Formulation

Given the result of the last Section, it suffices to consider the eccentricity effect for the

equal-mass case. In this scenario, the two masses (each M) are equidistant from the CM,

and therefore their coordinates are always opposite. Since the quadrupole moment involves

quantities quadratic in the coordinates, each mass contributes the same amount. The semi-

major axes a1 and a2 of the two orbits, and their average value a, are all the same. We

therefore consider (and at the end multiply by 2) one mass M orbiting the origin in a

Kepler orbit of semi-major axis a. Some basic facts about such a Kepler orbit are given in

Appendix B.

Up to some constants that will cancel when we consider the ratio with the reference case,

the power P is proportional to

P ∝
∑
ij

ω6|qij|2 (4.1)

The term ω6|qij|2 is nothing but the time average of

(
d3

dt3
qij

)2

(4.2)
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Hence, and from now on dropping the common factors that will cancel upon comparison

with the reference case,

P =
∑
ij

1

T

∫ T

0

(
d3

dt3
qij

)2

dt

=
∑
ij

1

T

∫ T

0

[
d3

dt3
r2hij(φ)

]2
dt (4.3)

We define

Pij =
1

T

∫ T

0

[
d3

dt3
r2hij(φ)

]2
dt (4.4)

In the Kepler orbit, the distance r has the expression

r = r0 s(e)
−1 (4.5)

where

s(e) = 1− e cosφ (4.6)

The expression (4.4) is an integral over t, but the integrand is expressed in terms of φ. It

is therefore necessary to relate these two variables. The relationship is essentially Kepler’s

second law: the radius vector sweeps out equal areas in equal times, which can be translated

into

dt =
r2

J
dφ (4.7)

where J is a constant, in effect the conserved angular momentum per unit mass. The

expression for Pij becomes

Pij =
1

T

∫ 2π

0

( J
r2

d

dφ

)3

r2hij(φ)

2 r2
J
dφ

=
J5

r60T

∫ 2π

0

(s2 d
dφ

)3
hij
s2

2 1

s2
dφ (4.8)

B. Evaluation of integrals

The integrals can be evaluated exactly. Note that there is a factor of (1−e cosφ)−2 in the

integrand. For each differentiation, the factor of (1 − e cosφ)−1 will move up by one unit.
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Hence, after 3 differentiations, there will be a factor of (1− e cosφ)2 in the integrand, which

gives a finite polynomial in e after the integration. This is a key feature of the calculation,

to which we shall return in the next Section.

The details of the algebra are in Appendix C. The expressions for Pij are

Pxx =
πJ5

r60T

(
144 +

797

2
e2 +

565

16
e4
)

Pxy = Pyx =
πJ5

r60T

(
144 +

873

2
e2 +

1107

16
e4
)

Pyy =
πJ5

r60T

(
144 +

953

2
e2 +

757

16
e4
)

Pzz =
πJ5

r60T

(
4e2 + e4

)
(4.9)

The total power P is

P = Pxx + Pxy + Pyx + Pyy + Pzz

=
πJ5

r60T
(576 + 1752e2 + 222e4)

=
576πJ5

r60T

(
1 +

73

24
e2 +

37

96
e4
)

(4.10)

Note that r0 and J also depend on e if lengths are referenced to a. The relations are

r0 = a(1− e2) (4.11)

J =
√
r0K =

√
GMa(1− e2)

2
(4.12)

Hence, we can write the total power as

P =
18π(GM)5/2

a7/2T
(1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)

(4.13)

The values of T , M and a are identical to the reference case of e = 0. Hence, the ratio P/P0

is

Fe(e) = (1− e2)−7/2
(

1 +
73

24
e2 +

37

96
e4
)

(4.14)

This expression is positive-definite, as it ought to be. The espression matches with the

literature [12].

11



C. Application to the present case

The eccentricity of PSR 1913+16 is e = 0.617, which gives a correction factor of Fe(e) =

11.84. In fact, putting all the factors together, we have P0 = 1.0 × 1022 W, Ff ≈ 1.0,

Fe = 11.84, giving P = 1.2 × 1023 W. Hence the predicted orbital decay parameters are

α = 2.7× 10−9 yr−1, α/2 = 4.3 s/decade2, or −Ṫ = 76 µs yr−1, in good agreement with the

observed values.

V. HARMONIC ANALYSIS: EXPANSION IN ECCENTRICITY

A. Motivation

In this and the next Sections we examine a conjecture for the reason behind the surpris-

ingly large value of the eccentricity factor (Fe(e)∼12 for e∼0.6), based on two observations.

(a) For a circular orbit (e = 0), all the coordinates are exactly sinusoidal in time, and

the quadrupole moment has only one frequency ω = 2Ω. However for an eccentric orbit

(e 6= 0), the coordinates vary periodically but not sinusoidally, and the quadrupole moment

has frequencies ω = nΩ, with various n. (b) The power radiated in any harmonic goes as

ω6 ∝ n6. These two properties together suggest that the large correction is due to the higher

harmonics being amplified by the factor n6. We examine this conjecture by decomposing

the quadrupole moment into harmonics and determining the contribution of each. This is

carried out by power series expansion in e in this Section (which seems at first to be a

reasonable strategy since the total power is a finite polynomial in e), and independently by

numerical integration in the next Section.

B. Fourier decomposition

Expand the quadrupole moment qij(t) into a Fourier series

qij(t) =
∑
n

q̃ij(n, e) p(nΩt) (5.1)

where for compact notation the periodic function p(θ) should be understood to be cos θ for

(ij) = (xx), (yy), (zz) and sin θ for (ij) = (xy), (yx). We have also indicated explicitly that

the expansion coefficients q̃ij(n, e) depend on e.
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Since the final answer is to be compared to the reference case, the e-independent pre-

factors can be omitted and we write

qij(φ) =
hij(φ)

(1− e cosφ)2
(5.2)

With nΩ being the angular frequency of the nth harmonic, the power radiated goes like

P =
∑
ij

Pij

Pij = (1− e2)4
∑
n

|q̃ij(n, e)|2 n6 (5.3)

The factor (1− e2)4 is due to the factor r20 in qij; since r0 = a(1− e2), r40 will give (1− e2)4

and a4 will be cancelled after comparing to the reference case. The factor n6 in (5.3) is the

essence of the conjecture.

C. Relation between angle and time

The analysis becomes somewhat cumbersome because qij is expressed in terms of φ,

whereas we want to Fourier-analyze it in terms of t. The relation between t and φ is given in

Appendix B. The point is that for a circular orbit (e = 0), t and φ are linearly related (the

one advancing by a period T when the other advances by an angle 2π). The relationship

becomes complicated for elliptic orbits, but can be analyzed order-by-order in powers of e.

We write

q̃ij(n, e) =
∞∑
k=0

aij(n, k) ek (5.4)

The coefficients aij(n, k) are evaluated up to k = 8 and shown in Table 1; they are nonzero

only if k ≥ n−2. (For example, the n = 6 harmonic starts with e4.)

D. Checking total power

With all the coefficients in hand, we can compute Pij (summed over harmonics) from

(5.3), expressed in the form

Pij = (1− e2)4
∑
k

bij(k) ek (5.5)
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In detail, we have

Pxx = (1− e2)4
(

144 +
2957

2
e2 +

121825

16
e4 +

880065

32
e6 +

10176544

128
e8 + . . .

)
Pxy = (1− e2)4

(
144 +

3033

2
e2 +

126927

16
e4 +

926955

32
e6 +

10805625

128
e8 + . . .

)
Pyy = (1− e2)4

(
144 +

3113

2
e2 +

131377

16
e4 +

962505

32
e6 +

11233175

128
e8 + . . .

)
Pzz = (1− e2)4

(
4e2 + 31e4 + 135e6 +

3485

8
e8 + . . .

)
(5.6)

We note that these series, if terminated at some power of e, would still be positive-definite.

(The truncation of a positive-definite infinite series need not be positive-definite; e.g., the

function (1− 2e2)2 = 1− 4e2 + 4e4 when truncated to e2 is not positive definite.)

These can be rendered into the form

Pij = (1− e2)−7/2
∑
k

cij(k) ek (5.7)

It is straightforward to compute the c coefficients from the b coefficients, and we have done so

up to k = 8. (a) It is verified that cij(6) = 0, cij(8) = 0, in agreement with the termination

of the series in (4.9) — which provides a nice consistency check. (b) The coefficients cij(0),

cij(2) and cij(4) agree with (4.9). These results then confirm the validity of the harmonic

analysis.

E. Separating into harmonics

It is then simple to isolate the contribution of each harmonic, by picking out only those

terms with a given n. Define the power formula for each harmonic in analogy to (5.7), with

coefficients cij(n, k), of course satisfying

∑
n

cij(n, k) = cij(k) (5.8)

and in particular

∑
n

cij(n, k) = 0 for k > 4 (5.9)

The total power is then given by an analogous expression with coefficients C(n, k), where

C(n, k) =
∑
ij

cij(n, k) (5.10)
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satisfy

∑
n

C(n, k) = 0 for k > 4 (5.11)

The coefficients C(n, k) are shown in Table 2, up to k = 8. These coefficients are not all

positive.

These results in principle allows us to determine the contribution of each harmonic —

but under one condition: that the number of terms evaluated (in our case up to e8) is a

sufficiently accurate approximation to the infinite series. This turns out not to be the case;

in fact, the partial sum up to e8 can be negative for some n. For example, if truncated at

e8, the n = 5 contribution is proportional to

C(5, 6)e6 + C(5, 8)e8 = 1.53× 105 e6 − 1.35× 106 e8

which is negative for e2 > 0.113. Such negativity is nonsense and shows that we cannot

truncation the sum over k.

This difficulty is somewhat surprising. Although the series in ek for each harmonic does

not converge well, the corresponding series in ek for all harmonics taken together does

converge well — in fact the series terminates. In other words, even though say C(n, 6) for

each n is large, they actually add up to zero by a “miracle”. This is readily verified from

the entries in Table 2; for example

∑
n

C(n, 6) =
22921

32
− 36756 +

12594933

64
− 313344 +

9765625

64
= 0 (5.12)

This “miraculous” cancellation is the cause of the paradox: the expansion in ek (to a mod-

erate number of terms) does not work well for each harmonic, but does work well for their

sum. Hence the method of expanding in powers ek (unless carried to very large k) does not

allow us to determine the contribution of each harmonic.

VI. HARMONIC ANALYSIS: NUMERICAL APPROACH

A. Formulation

Since the expansion in powers of e encounters an unexpected and subtle technical dif-

ficulty, in this Section we address the same issue using a numerical approach. Given the
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harmonic decomposition (5.1), the coefficients are given by

q̃ij(n, e) = 2
∫ 1

0
qij(φ) p(2nπτ) dτ (6.1)

where τ = t/T and p(θ) is cos θ (sin θ) if qij(φ) is even (odd) in φ.

The integral is to be carried out numerically. Using equal intervals of ∆φ = 2π/N :

q̃ij(n, e) ≈ 2(∆φ)
∑
k

qij(φk) p(2nπτk)

(
dτ

dφ

)
k

(6.2)

B. Relation between time t and angle φ

In order to carry out the evaluation, we need to relate φ and t. It will be convenient to

consider the dimensionless variables τ = t/T and φ/2π, each of which advances by one unit

per cycle, and they are related by

τ =
t

T
=

φ

2π
+ ∆(e, φ) (6.3)

defining a periodic function ∆ which vanishes at φ = 0, 2π. (See Appendix B.)

From Kepler’s second law, we can define a constant

J = r2
dφ

dt

For elliptical orbit, it can be readily shown that

r =
r0

1− e cosφ

Thus we have

Jdt =
r20

(1− e cosφ)2
dφ (6.4)

or

T =
r20
J

2πg(e)

where

g(e) =
1

2π

∫ 2π

0

dφ

(1− e cosφ)2
= (1− e2)−

3
2
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An expression for ∆ is obtained by the indefinite integral of (6.4), after subtracting off

the average value from both sides:

∆(e, φ) =
1

2π

φ∫
0

[
g(e)−1(1− e cosφ)−2 − 1

]
dφ (6.5)

This is evaluated numerically using the same step size ∆φ = 2π/N . The result is shown in

Figure 1 for various values of e,

C. Power

Consider the contribution of each harmonic to the power, i.e., each term in the sum (5.3):

Pij(n) = (1− e2)4 q̃ij(n, e)2 n6 (6.6)

The power in each harmonic will further need to be summed over ij:

P (n) = Pxx(n) + 2Pxy(n) + Pyy(n) + Pzz(n) (6.7)

and the total power is

P =
∑
n

P (n) (6.8)

which then allows us to assess the relative contributions of each harmonic.

The importance of high harmonics can be summarized by a mean value of n, defined as

n̄(e) =

∑
n nP (n)∑
n P (n)

(6.9)

Test of convergence

It is necessary to test for convergence, i.e., to make sure that the results using finite N are

accurate; we expect that the results for P (n) would be inaccurate when n/N = O(1).

Figure 2 shows
∑
ij q̃ij(n, e)

2 as bar charts, as function of n, computed for e = 0.617 using

N = 72, 180, i.e., ∆φ = 5o, 2o. The results can be summarized as follows.

• There is a region of relatively small n (in this case say up to n ∼ 10) for which the two

choices of discretization give consistent non-zero results, which are therefore reliable.

• There is a “valley” (in this case say 10 < n < 18) for which these coefficients are

nearly zero.
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• Then for large n, typically n/N ∼ 1/3 or more, these computed coefficients are again

non-zero, but disagreeing between the two choices of discretization.

It is obvious that the results in the third region are spurious, and all sum over n, e.g., as in

(6.8) or (6.9), should be terminated in the “valley region”.

For all further purposes, we use N = 3600, i.e., ∆φ = 0.1o.

Comparison with analytic results

Table 3 provides a comparison between the analytical results in Section IV and the numerical

result by summing over harmonics as in (6.8), for a range of eccentricities. Also shown is

the value of n at which the summation was truncated for each eccentricity. The numerical

results for the total power agree well with the analytic results, giving further confidence to

the separation into harmonics.

D. Results

Here, we present results for the case e = 0.617. The normalized power spectrum, com-

puted up to the n = 20, is shown in Figure 3. Apart from the normalization, Figure 3 differs

from Figure 2 in that it shows the power, which contains the extra factor n6. In fact, the

contrast between these two figures illustrates clearly the role of this factor.

The average n, as defined in (6.9), is n̄(0.617) = 8.3.

Figure 4, shows n̄(e) as a function of e. This increases rapidly with e, especially beyond

say e = 0.5. This feature is the final result of this Section, and vividly confirms the conjecture

that the large eccentricity factor can be attributed to the higher harmonics which enter with

we weights n6.

VII. CONCLUSION

We have evaluated, through an expansion in powers of e, the power radiated by a binary

system, and the result agrees well with data from the Hulse–Taylor pulsar. The calculation

can be expressed as the sum over different harmonics. Each of these contributions is not well

represented by a low-order truncation of the power-series expansion in e — even though their

sum is well represented. The contribution of each harmonic can nevertheless be evaluated

18



numerically. It is confirmed that as e increases, the higher harmonics become important,

and this feature is nicely summarized by the behavior of n̄(e) in Figure 4.

In short, we have understood both the value of the eccentricity factor and the physical

reason why it is so large in the case of the Hulse–Taylor pulsar.
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APPENDIX A: TWO WAYS OF EXPRESSING THE RATE OF ORBIT DECAY

The definition of α is given by

α = − Ṫ
T

(A1)

The currently accepted value is α = 2.72× 10−9 yr−1. For αt� 1

T = T0e
−αt ≈ T0(1− αt) (A2)

Hence for each cycle, there will be a time difference of αT 2
0 . In the nth cycle, the time

difference is nαT 2
0 . The cumulative time difference after N cycles is

∆tc =
N∑
n=1

nαT 2
0 ≈

N2

2
αT 2

0 (A3)
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But N = t/T0, hence

∆tc =
α

2
t2 (A4)

The value of α/2 is 4.3 s/decade2.

APPENDIX B: SOME PROPERTIES OF KEPLER ORBITS

By Kepler’s Second Law,

Jdt = r2dφ =
r20

(1− e cosφ)2
dφ

where J is a constant. Integrating over a period:

T =
r20
J

∫ 2π

0

dφ

(1− e cosφ)2
=
r20
J
· 2πg(e)

where

g(e) =
1

2π

∫ 2π

0

dφ

(1− e cosφ)2

The exact solution of g(e) is [11]

g(e) = (1− e2)−3/2 (B1)

Thus

T = 2π
r20
J

(1− e2)−3/2 (B2)

To find the relationship between time and angle, we go back to (B1) and write it as

dt =
r20

J(1− e cosφ)2
dφ

=
r20
J

{
g(e) +

[
1

(1− e cosφ)2
− g(e)

]}
dφ

We have added and subtracted a term g(e) in the integrand so that the square bracket has

zero average. Thus

t =
r20g(e)

J
φ+

r0
2

J

∫ φ

0

[
1

(1− e cosφ)2
− g(e)

]
dφ

= T
φ

2π
+
r20
J

∫ φ

0

[
1

(1− e cosφ)2
− g(e)

]
dφ
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where the first term on the RHS has been identified in terms of the period T by using the

property that the second term vanishes for φ = 2π. Hence

t

T
=

φ

2π
+ ∆(e, φ) (B3)

where

∆ =
1

2π

∫ φ

0

[
g(e)−1(1− e cosφ)−2 − 1

]
dφ

Note that in (B3), on the RHS the first term captures the secular dependence and ∆ is

strictly periodic: ∆(e, 2π) = 0; this is the reason for adding and subtracting g(e).

APPENDIX C: EVALUATION OF THIRD TIME DERIVATIVE

Recall that

Pij =
J5

r60T

∫ 2π

0

(s2 d
dφ

)3
hij
s2

2 1

s2
dφ

where hij is a polynomial in cosφ and/or sinφ. We evaluate Pij term by term. For the

purpose of this Appendix, it is convenient to adopt the compact abbreviation

C ≡ cosφ , S ≡ sinφ

The xx term

For the term Pxx

Pxx =
J5

r60T

∫ 2π

0

(s2 d
dφ

)3 (
3C2 − 1

s2

)2 1

s2
dφ

First differentiation

(1− eC)2
d

dφ

3C2 − 1

(1− eC)2

=
S(2e− 6C)

1− eC

Note that one factor of (1− eC) in the denominator has been removed.

Second differentiation

(1− eC)2
d

dφ

S(2e− 6C)

1− eC
= 6eC3 − 12C2 + 2eC + 6− 2e2
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Note that another factor of (1− eC) in the denominator has been removed, and we are left

with a polynomial in e and C, S.

Third differentiation

(1− eC)2
d

dφ
(6eC3 − 12C2 + 2eC + 6− 2e2)

= −2S(9eC2 − 12C + e)(1− eC)2

The property that the integrand ends up as such a polynomial, importantly without trigono-

metric functions in the denominator, is common to all the terms and we shall not repeat

these remarks below.

The integral (ignoring the constants in the prefactor) becomes

∫ 2π

0
4S2(9eC2 − 12C + e)2(1− eC)2 dφ

=
(

144 +
797

2
e2 +

565

16
e4
)
π

The power Pxx is then

Pxx =
πJ5

r60T

(
144 +

797

2
e2 +

565

16
e4
)

The xy and yx terms

For the term Pxy

Pxy =
J5

r60T

∫ 2π

0

(s2 d
dφ

)3 (
3SC

s2

)2 1

s2
dφ

First differentiation

(1− eC)2
d

dφ

3SC

(1− eC)2

=
6C2 − 3eC − 3

1− eC

Second differentiation

(1− eC)2
d

dφ

6C2 − 3eC − 3

1− eC
= 6S(eC2 − 2C + e)
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Third differentiation

(1− eC)2
d

dφ
6S(eC2 − 2C + e)

= 6(3eC3 − 4C2 − eC + 2)(1− eC)2

The integral becomes

∫ 2π

0
36(3eC3 − 4C2 − eC + 2)2(1− eC)2 dφ

=
(

144 +
873

2
e2 +

1107

16
e4
)
π

The power Pxy is then

Pxy =
πJ5

r60T

(
144 +

873

2
e2 +

1107

16
e4
)

Note that the expression for hij(φ) is identical for Pxy and Pyx, so Pxy = Pyx.

The yy term

For the term Pyy

Pyy =
J5

r60T

∫ 2π

0

(s2 d
dφ

)3 (
3S2 − 1

s2

)2 1

s2
dφ

First differentiation

(1− eC)2
d

dφ

3S2 − 2

(1− eC)2

=
2S(3C − 2e)

1− eC

Second differentiation

(1− eC)2
d

dφ

2S(3C − 2e)

1− eC
= −6eC3 + 12C2 − 4eC + 4e2 − 6

Third differentiation

(1− eC)2
d

dφ
(−6eC3 + 12C2 − 4eC + 4e2 − 6)

= 2S(9eC2 − 12C + 2e)(1− eC)2
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The integral becomes ∫ 2π

0
4S2(9eC2 − 12C + 2e)2(1− eC)2 dφ

=
(

144 +
953

2
e2 +

757

16
e4
)
π

The power Pyy is then

Pyy =
πJ5

r60T

(
144 +

953

2
e2 +

757

16
e4
)

The zz term

For the term Pzz

Pzz =
J5

r60T

∫ 2π

0

(s2 d
dφ

)3 (−1

s2

)2 1

s2
dφ

First differentiation

(1− eC)2
d

dφ

−1

(1− eC)2

=
2eS

1− eC

Second differentiation

(1− eC)2
d

dφ

2eS

1− eC
= 2e(C − e)

Third differentiation

(1− eC)2
d

dφ
[2e(C − e)]

= −2eS(1− eC)2

The integral becomes ∫ 2π

0
4e2S2(1− eC)2 dφ = (4e2 + e4)π

The power Pzz is then

Pzz =
πJ5

r60T
(4e2 + e4) (C1)
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APPENDIX D: TOY MODEL FOR PARADOX

The technical difficulty encountered can be stated abstractly as follows. There is a func-

tion

F (e) =
∑
n

f(n, e) (D1)

Think of n as the harmonic index. All these functions can be expanded in powers of e2:

F (e) =
∑
k

C(k) e2k

f(n, e) =
∑
k

c(n, k) e2k (D2)

with the property that the series for F terminates but that for f(n, e) does not, and perhaps

converges slowly or even not at all. In other words, for k > k0 for some k0, there is the

“miracle”

∑
n

c(n, k) = 0 (D3)

How is this possible? Here we construct a toy model that exhibits this feature.

Start with the identity

(1− 1)k+m e2k = 0 (D4)

where m > 0 is an integer. Expand the bracket:

∑
n

(−1)n
(k +m)!

(k +m− n)!n!
e2k = 0 (D5)

Now multiply by Ak, sum over k and call the result F (e):

F (e) =
∑
k

Ak ·
∑
n

(−1)n
(k +m)!

(k +m− n)!n!
e2k = 0 (D6)

Now isolate the terms associated with n:

f(n, e) = (−1)n
∑
k

Ak
(k +m)!

(k +m− n)!n!
e2k (D7)

Thus we identify the coefficients as

c(n, k) = (−1)nAk
(k +m)!

(k +m− n)!n!
(D8)
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We see that the sum (D7) does not terminate, and depending on the choice of Ak can

converge very slowly or even not converge at all.

If we change c(n, k) for k ≤ k0, we would get F (e) which is a polynomial but not zero.
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Tables

n k axx(n, k) axy(n, k) ayy(n, k) azz(n, k)

0 0 1/2 - 1/2 −1

0 2 11/2 - −2 −7/2

0 4 21/2 - −9/2 −6

0 6 31/2 - −7 −17/2

0 8 41/2 - −19/2 −11

1 1 11/2 3/2 −7/2 −2

1 3 71/8 −3/4 −41/8 −15/4

1 5 9523/768 1927/256 −5291/768 −529/96

1 7 733597/46080 44607/5120 −398567/46080 −33503/4608

2 0 3/2 3/2 −3/2 0

2 2 −1 −3/4 1/2 1/2

2 4 −65/48 −3/4 25/48 5/6

2 6 −251/120 −253/240 217/240 19/16

2 8 −16103/5760 −1639/1280 7231/5760 1109/720

3 1 −3/2 −3/2 3/2 0

3 3 11/16 9/16 −7/16 −1/4

3 5 431/1280 99/1280 29/1280 −23/64

3 7 1827/2560 363/1280 −273/1280 −1281/2560

4 2 3/2 3/2 −3/2 0

4 4 −5/6 −3/4 2/3 1/6

4 6 1/30 43/240 −7/30 1/5

4 8 −221/630 −129/1120 23/315 5/18

5 3 −25/16 −25/16 25/16 0

5 5 875/768 275/256 −775/768 −25/192

5 7 −10475/32256 −375/896 3625/8064 −575/4608

6 4 27/16 27/16 −27/16 0

6 6 −63/40 −243/160 117/80 9/80

6 8 6147/8960 6723/8960 −981/1280 9/112

7 5 −2401/1280 −2401/1280 2401/1280 0

7 7 199283/92160 21609/10240 −189679/92160 −2401/23040

8 6 32/15 32/15 −32/15 0

8 8 −928/315 −304/105 128/45 32/315

9 7 −177147/71680 −177147/71680 177147/71680 0

10 8 15625/5376 15625/5376 −15625/5376 0

Table 1. The coefficients aij(nk). All com-

binations of n and k that are not shown are

above yield the value 0 for the coefficients.
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n k C(n, k)

1 2 87

1 4 −1575/4

1 6 22921/32

1 8 −510613/768

2 0 576

2 2 −4896

2 4 17880

2 6 −36756

2 8 281419/6

3 2 6561

3 4 −216513/4

3 6 12594933/64

3 8 −212771043/512

4 4 36864

4 6 −313344

4 8 3576320/3

5 6 9765625/64

5 8 −693359375/512

6 8 531441

Table 2. The coefficients C(n, k). Note that

C(n, k) = 0 whenever k is odd.

28



Figure 1: The periodic function Δ(e,ϕ), evaluated for several different values of e.
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Figure 2: The computed value of qn
2 (summed over polarizations) versus n. The blue (red) bars are computed using 72 (180) 

integration steps. For small n (in this case, up to 20), the results have converged, whereas for large n (scaling with number of 
integration steps), the numbers are spurious. 

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

0

20

40

60

80

100

120

140

160

Size 72
Size 180

n

qn
2



Figure 3: The power in each harmonic (normalized to the total power), versus n, for the case 
of e = 0.617; evaluated using 3600 steps. This histogram differs from the one used in Figure 2 
by the factor n6.
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Figure 4: The mean n̄ versus e. The conjecture is confirmed by the large values.
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